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The formulation derived in Part I of this paper is applied to investigate non-
linear vibration behavior of inclined sag cables with and without oil dampers in
long-span cable-stayed bridges. The inclined sag cables used in computation are
also tested in the laboratory with scaled cables and oil dampers. The experimental
results are then compared with the theoretical results to verify the suggested
approach. Both theoretical analyses and experiments display some typical non-
linear behavior of cable vibration, including response hardening, response
bifurcation, multiple solutions, jump, and internal resonance. They also
demonstrate that an oil damper with an appropriate damping coe$cient being
selected can e!ectively suppress large vibration amplitudes of the cable so that in
some cases, non-linear cable vibration problem may become a linear vibration
problem. The agreement between the experimental and theoretical results is found
to be satisfactory.

( 1999 Academic Press
1. INTRODUCTION

Long and low damped stay cables in modern cable-stayed bridges are prone to
large vibrations due to wind excitation, rain}wind excitation, or support motion.
Cables of large vibration amplitudes may exhibit strong non-linear dynamic
behavior, such as jump, multiple solutions, limit circle, natural-frequency shift, sub- or
super-harmonic resonance, hardening or softening response, bifurcation, or chaotic
motion. Non-linear vibration response of a cable may also demonstrate abundant
internal resonances between in-plane and out-of-plane modes of vibration. One-to-
one internal resonance has been found in a taut string of cubic non-linearity [1}5], in
which the string subject to harmonic in-plane excitation experiences non-planar
motion, that is, the so-called whirling or ballooning motion.

For a long sag cable, both the quadratic and cubic non-linearities arising from
the non-linear relationship between the dynamic tension and displacement may
0022-460X/99/330465#17 $30.00/0 ( 1999 Academic Press
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leads to much more complex non-linear behavior and internal resonance than
those observed in a taut string. An important cable sag parameter j2 was thus
introduced by Irvine [6]. This parameter is de"ned as the ratio of the elastic-to-
catenary sti!ness. For an inclined sag cable, it can be expressed approximately as

j2"A
mg¸
H

cos hB
2 ¸EA

¸
%
H

, (1)

where

¸
%
"¸

3C1#A
mg¸
H

cos hB
2

N8D (2)

¸
%

is the distance between two supports of the cable in the x1-direction (see
Figure 1 in Part I), m is the mass of the cable per unit length, g is the acceleration
due to gravity, H is the horizontal component of the static tension in the x}y plane,
¸ is the horizontal length between two cable end-supports in the x}y plane, E is the
cable modulus of elasticity, A is the cross-sectional area of the cable, and the cable
inclination h is de"ned as
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To seek possible internal resonances in a long sag cable, most previous studies
[7}10] focus on a horizontal cable with a sag parameter log j2 about 1)6 near the
"rst frequency crossover. Under either external or parametric excitation, the
non-linear response of such a sag cable may exhibit one-to-one, two-to-one,
two-to-two-to-one or combined internal resonances. The sag parameter, log j2, of
the stay cables in a cable-stayed bridge ranges mostly from !2 to 1. These stay
cables are thus between the taut string and the long sag cable. Their non-linear
behavior and internal resonance have not been extensively studied. In particular,
the e!ects of oil damper installed to a bridge stay cable on non-linear behavior and
internal resonance have not been discussed yet to be the best of the writers'
knowledge. Part II of this paper therefore aims to investigate non-linear vibration
behavior of bridge stay cables with and without oil dampers using the approach
suggested in Part I of this paper, and to verify this approach through a comparison
with experimental results.

2. CABLE}OIL DAMPER SYSTEM

To verify the suggested approach and to study non-linear vibration and
vibration mitigation of inclined sag cables with and without oil dampers, a testing
facility was developed, as schematically shown in Figure 1, and a series of
laboratory tests were carried out on a scaled cable and oil damper. The properties
of the test cable are as follows: the cable length is 3)2 m; the cable mass per unit is
0)03682 kg/m; the cross-sectional area A is 4)2614]10~6 m2; the Young's modulus
E is 6)814]1010 N/m2; the cable inclination h is 27)53; the cable static tension ¹ is
130 N; and the cable sag parameter log j2 is !0)84. These properties of the test



Figure 1. Schematic diagram of testing facility and cable.
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cable are selected based on dynamic similarities with actual bridge stay cables. To
study the e!ects of cable sag, the sag parameter of the cable is changed in terms of the
change of the cable static tension. An oil damper is installed in the plane of cable
static equilibrium normal to the cable length at the location of 3% ¸

measured from the low cable support. In most cases, an optimal damper size obtained
from free-vibration tests of the linear cable}damper system is used for the study of the
non-linear cable}oil damper system. The free-vibration tests were carried out by
hanging a dead weight on the cable using a "shing line and then cutting the "shing line
to give the cable an initial displacement. The external dynamic loading is a harmonic
concentrated force normally acting on the cable in the cable static equilibrium plane,
located at 0)5% cable length measured from the top support of the cable.

To facilitate the discussion of, and comparison with the experimental results, in
the following, some considerations and techniques used in the computation are
introduced "rst. The suggested approach is then used to analyze the test cable with
and without oil damper. The comparison between experimental and theoretical
results is "nally performed.

3. SOME CONSIDERATIONS IN COMPUTATION

3.1. TWO-DEGREE-OF-FREEDOM MODEL

Due to the complex nature of non-linear vibration of cable}damper systems,
only the non-linear behavior of the system for in-plane harmonic loading around
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the "rst in-plane and out-of-plane natural frequencies of the corresponding linear
cable}damper system is considered. Correspondingly, only the "rst-order
harmonic terms in equations (80) and (81) in Part I of the paper are taken into
consideration.
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For the cable without an oil damper, the cable of small vibration amplitude can

be seen as a classically damped system and all eigenfunctions are thus real. In such
a case, the "rst order complex equations (62) and (63) in Part I of the paper can be
simpli"ed as
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associated with the "rst in-plane and out-of-plane vibration modes of the linear
cable (see Part I of the paper). Q

1
and Q

2
are the real in-plane and out-of-plane

exciting functions, respectively. q(1)
1

and q(1)
2

are the complex time functions related
to the non-linear in-plane and out-of-plane cable motions respectively. The
superscript } is the conjugate symbol of a complex functions i"J!1. The
substitution of the harmonic solutions, equations (4) and (5) into equations (6) and
(7) leads to the six-coupled algebraic non-linear equations about the six unknown
real constants. The Newton}Raphson computation method is then used to seek the
six unknown real constants and thus the non-linear dynamic response of the cable.

For the cable with an oil damper, the system is a non-classically damped system
and the eigenfunctions are complex. The "rst order harmonic solutions, Equations
(4) and (5), containing the 12 unknown constants should be substituted into the
general equations of motion [equations (62) and (63) presented in Part I of the
paper] in a similar way to the case of the cable without an oil damper to obtain
the 12 coupled algebraic non-linear equations about these unknown constants. The
Newton}Raphson method is then applied to "nd the solutions of dynamic response
for the non-linear cable}damper system.

3.2. ALGORITHM FOR MULTIPLE SOLUTIONS

To capture the non-linear vibration phenomena of the cable or cable}damper
system such as transition from in-plane motion to non-planar motion, multiple
solutions, and response jump, some proper algorithms should be used in
computation. For the sake of clari"cation, let us take the cable without oil damper
as an example to explain the algorithm used in this study.
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When applying the Newton}Raphson method, the initial values of R
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or the initial dynamic displacement amplitude
a
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at the mid-point of the cable can be "rst obtained from the linear system without

referring to the out-of-plane quantities. This is because for the linear system, the
in-plane and out-of-plane motions are not coupled.

Then, attention is paid to the three non-linear algebraic equations for the
out-of-plane motion obtained from the harmonic balance method [see Eq. (83) in
Part I of the paper when ¸"0, 1 and 2]. Since the static component S
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is properly normalized, the out-of-plane displacement response is q(1)
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To obtain the non-trivial solutions of S
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matrix of the two linear homogeneous equations should be equal to zero, from
which a polynomial function of a

2
can be obtained. If the real and positive roots

of a
2

are found from this polynomial function, the internal resonance between
in-plane and out-of-plane mode vibration and thus the non-planar cable motion
may be thought to have occurred. Otherwise, there is no out-of-plane motion of
the cable.
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amplitudes a
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. The algorithms described above can ensure that the out-of-

plane solutions will converge to the non-trivial solutions and provide a criterion for
judgment of the bifurcation point.

3.3. STABILITY OF RESPONSE

The resulting dynamic displacement response of the non-linear cable or
cable}damper system can be classi"ed as a stable response or an unstable
response according to a stability analysis. Again, consider the cable without oil
damper as an example. Let the six constants R
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Substituting them into equations (6) and (7) and neglecting the higher-order
terms, a set of linearized equations can be achieved:
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d
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in which [A] and [B] are the two constant matrices whose elements are determined
by the constant coe$cients of equations (6) and (7) and the six constants R
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If and only if none of the eigenvalues of the system [equation (10)] has a positive-
de"nite real part, the solution of equations (6) and (7) or the motion of the system is
stable. Otherwise, it is unstable.

4. CABLE WITHOUT DAMPER

Although the dynamic response at any point of the cable can be computed, only
the normal and lateral components of the displacement response, a

1
and a

2
, at the

mid-point of the cable are presented in the following to demonstrate the non-linear
behavior of the cable.

4.1. NON-LINEAR RESPONSE CHARACTERISTICS

Figure 2 shows both the in-plane and out-of-plane steady-state frequency-
response curves of the cable subject to a harmonic force of 5 N amplitude. In this
"gure, the x-co-ordinate is the ratio of the exciting frequency u to the natural
frequency of the "rst in-plane undamped linear vibration mode, u

0in
, and the

y-coordinates is the corresponding displacement response amplitudes at the
midspan, a

1
and a

2
. The cable has a static tension of 130 N and the natural

frequencies of the "rst in-plane and out-of-plane linear vibration modes are 9)35
and 9)29 Hz, respectively. A small internal damping with a damping coe$cient of
0)0147 N s/m2 measured from the test cable is also taken into consideration.

To demonstrate the non-linear vibration behavior of such a taut cable, the
exciting frequency is increased slowly from a frequency ratio much less than
1 where the planar motion is expected. The in-plane stable displacement response
amplitude a

1
is found to increase with the increasing excitation frequency until the

frequency ratio reaches about 1)003 at Point A, where a Hopf bifurcation occurs
and the out-of-plane displacement response amplitude a

2
starts to be excited out.

With the further increase of excitation frequency, multiple solutions are found. One
is for the pure in-plane unstable vibration that may reach very high response
amplitude until Point D and then jump downward suddenly to a pure in-plane
stable vibration of very small amplitude. The other solution is for the non-planar
stable vibration until Point C. In the non-planar motion, the in-plane response
amplitude is larger than the out-of-plane response amplitude but the rate of
increasing of the out-of-plane response amplitude is faster than that of the in-plane
response amplitude. At Point C where the frequency ratio is about 1)095, the



Figure 2. Frequency-response curves of cable without damper. * Stable in-plane a1; s unstable
in-plane a1; === stable out-of-plane a2; C unstable out-of-plane a2.
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non-planar cable motion suddenly jumps back to a pure in-plane stable vibration
of a small vibration amplitude. As the excitation frequency further increases from
Point C, the unstable non-planar solutions are obtained (see E-G and E@-G@ ) apart
from the stable in-plane cable motion of small amplitude.

When the frequency ratio is swept down from 1)28, the cable exhibits pure
in-plane stable motion and the in-plane response amplitude increases with the
decrease of the exciting frequency until Point B. Immediately after Point B, the
in-plane stable motion has a sudden upward jump to become the non-planar stable
motion following the curves of A-C and A@-C@ and then the in-plane stable response
following the curve of A-H. Clearly, for the studied cable, there is a 1 : 1 internal
resonance between the "rst in-plane and out-of-plane modes of the cable. This
internal resonance induces the non-planar cable motion and reduces the in-plane
response amplitude. These observations are very similar to those observed from
a taut string [5].

4.2. EFFECTS OF CABLE SAG

To seek the e!ects of cable sag on non-linear dynamic behaviour of stay cables,
the static tension of the studied cable is reduced to 42 N while other cable



Figure 3. E!ects of cable sag on non-linear vibration behavior.* Stable in-plane a1; - - - unstable
in-plane a1; - - - unstable out-of-plane a2; === stable out-of-plane a2.
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parameters remain unchanged. Due to the change of the cable tension, the cable sag
parameter log j2 is now increased from !0)84 to 0)64 and the natural frequencies
of the "rst in-plane and out-of-plane linear modes of vibration become 6)134 and
5)294 Hz. The ratio of the two natural frequencies is obviously di!erent from that
for the cable having the static tension of 130 N.

The frequency-response curves of the cable subject to a harmonic force of 5 N
amplitude are computed and the results are shown in Figure 3. Compared with
Figure 2, it is noted that the non-linear vibration behavior of the sag cable is
signi"cantly di!erent from the taut cable. By forward sweeping of the exciting
frequency, at Point A with a frequency ratio of 0)947, the in-plane stable motion
jumps to the non-planar motion of the cable, in which the in-plane response
amplitude a

1
in the pure in-plane cable vibration jumps down while the out-of-

plane response amplitude a
2

suddenly appears with the amplitude larger than the
in-plane response amplitude. There are two solutions involved in the non-planar
cable motion. One represents the stable non-planar motion over a wide range of
frequency ratio and the other indicates the unstable non-planar motion over
a relatively narrow range of frequency ratio (curves A1}B1 and A2}B2). The
in-plane response amplitude in the unstable non-planar motion is smaller than that
in the stable non-planar motion while the out-of-plane response amplitudes in both
cases are similar. It is also noted from Figure 3 that apart from the non-planar
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motion of the cable, there is the stable pure in-plane motion after Point A
until Point E where the in-plane motion jumps down to the stable in-plane
motion of very small amplitude. In practice, the occurrence of either the stable
non-planar motion or the stable in-plane motion may depend on the initial
condition.

When the excitation frequency is swept down from 1)3, the response amplitude
a
1

increases gradually until Point D with a 1)065 frequency ratio, where the pure
in-plane motion of the cable may jump to one of the two possible non-planar
oscillations (curves A

1
-D

1
and A

2
-D

4
or curves A

1
-D

2
and A

2
-D

3
). If the

pure stable in-plane vibration can remain until Point C at a 1)052 frequency
ratio, then the in-plane motion may jump from Point C to Point C@ to another
stable in-plane motion curve (curve A-C@). All the possible motions mentioned
above are sustained on their own route until the frequency ratio is reduced to 0)947
at Points A

1
, A and A

2
. After that, all the possible cable motions return to the pure

in-plane vibration.
It is seen from the above discussion that the internal resonance phenomenon in

the sag cable seems to be di!erent from those occurring in the relatively taut cable
of 130 N tension. In fact, this type of internal resonance phenomenon may be seen
as one between 1 : 1 internal resonance and 2 : 1 internal resonance which may occur
if the sag of the cable is further reduced to its "rst frequency avoidance.

4.3. EFFECTS OF CABLE INTERNAL DAMPING

To facilitate the comparison of non-linear vibration behavior between the cable
with and without oil damper, the e!ects of viscous internal damping on non-linear
cable dynamic response are investigated. Figure 4 shows the frequency-response
curves of the cable with a static tension of 130 N and an internal damping
of damper coe$cient c1"c2"0)0433 N s/m2. This internal damping provides
about 1% of modal damping ratios in both the "rst in-plane and out-of-plane
linear modes of vibration of the cable. The cable is subject to an in-plane
harmonic excitation of 5 N amplitude. It is seen that the non-linear behavior of
the cable vibration becomes very weak compared with the same cable with very
small internal damping (see Figure 2). This is consistent with the report
from Miyata [11] that a logarithmic decrement of 0)05 may suppress wind-induced
cable vibration of large amplitude. In Figure 4, there is also the Hopf bifurcation
point (Point A), where the stable non-planar motion of the cable occurs but within
a very narrow range of frequency ratio. The amplitudes of both in-plane and
out-of-plane displacements in the non-planar motion are also much smaller than
those occurring in the cable of very small internal damping (see Figure 2). The
frequency ratio where the bifurcation occurs in this case is 1)013 compared to 1)003
in the cable with very small internal damping (see Figure 2). Furthermore, other
non-planar stable solutions are found within a very short range of frequency ratio
of about 1)055 (see Points C and C@), in which the in-plane response amplitude
jumps to a high value while the out-of-plane response amplitude drops to a very
low value.



Figure 4. E!ects of cable internal damping on non-linear vibration behavior.* Stable in-plane a1;
=== stable out-of-plane a2; - - - unstable in-plane a1.
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5. CABLE WITH OIL DAMPER

Consider an oil damper attached to the cable in the cable static equilibrium plane
and normal to the cable length at the location of 3% ¸ measured from the lower
cable support (see Figure 1). The hybrid method is then applied to the
corresponding linear cable}damper system to "nd the relationship between the
modal damping ratio in the "rst in-plane vibration mode and damper damping
coe$cient (or called damper size). The results are plotted in Figure 5 for the cable of
130 and 42 N tension. It is seen that there is an optimum damper size of about
22)2 N s/m for the cable of 130 N tension and 15 N s/m for the cable of 42 N
tension, providing the maximum modal damping ratio in the "rst in-plane
vibration mode of 1)86% for the cable of 130 N tension and of 1)48% for the cable
of 42 N tension. One factor causing the maximum modal damping ratio in the cable
of 42 N tension to be smaller than that in the cable of 130 N tension are frequency
avoidance e!ects. More information on the frequency avoidance e!ects and modal
damping ratios in higher vibration modes of the linear cable}damper system can be
found in reference [12].

Now let us consider the cable of 130 N tension with an oil damper of 6)0 N s/m
damping coe$cient which is not the optimum damper size. The modal damping
ratio provided by this damper in the "rst in-plane mode of the cable is estimated at



Figure 5. Variations of "rst in-plane modal damping ratio with damper size. * T"130 N; - - -
T"42 N.
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about 1)06% from Figure 5. The frequency-response curves of the cable}damper
system subject to a harmonic excitation of 5 N amplitude are plotted in Figure 6. It
is seen that the non-linear vibration behavior of such a non-proportionally damped
cable system is similar to that of the same cable without an oil damper, as shown in
Figures 2 and 4. One-to-one internal resonance also occurs at the frequency ratio of
about 1. The maximum in-plane and out-of-plane response amplitudes in the
non-planar motion are almost equal to those for the cable not equipped with the
damper (see Figure 2). This is because the oil damper is installed in the cable plane
so that the out-of-plane modal damping of the cable is not changed by the oil
damper. On the other hand, the pure unstable in-plane response amplitude of the
cable in this case is compatible with that for the cable without oil damper but with
an internal damper ratio of similar value (see Figure 4). Obviously, the non-planar
stable response amplitudes of the cable without damper but with a similar internal
damping ratio (see Figure 4) are much lower than those in the cable}damper
system. Again, this is because the internal damping ratio in the out-of-plane
vibration mode is smaller in the cable}damper system. Clearly, the cable with an
improper designed oil damper still exhibits non-linear vibration behavior.

When damper size is increased to the optimum value of 22)2 N s/m, it is found
that the dynamic response of such a cable}damper system exhibits almost linear
behavior, as shown in Figure 7. The dynamic response of the system is dominated



Figure 6. Frequency-response curves of cable}damper system with small damper size. * Stable
in-plane a1; === stable out-of-plane a2; - - - unstable in-plane a1.
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by the pure in-plane stable vibration. The non-planar motion covers only over
a very narrow range of frequency ratio but the out-of-plane displacement
amplitude is quite high. The frequency ratio of the bifurcation point A however
remains unchanged, compared with the cable without damper.

From the above discussions, two points may be noted. The "rst is that a properly
selected damper attached to a stay cable in its static equilibrium plane can
e!ectively reduce in-plane non-linear response. The second is that the installation
of oil damper may reduce the in-plane response amplitude in a non-planar motion
but when the internal resonance is fully developed, the damper may lose its
functions to suppress both in-plane and out-of-plane response amplitudes.
However, the latter can be improved by installing a pair of oil dampers to provide
modal damping ratios in both in plane and out of plane, as discussed in reference
[12] for a linear cable}damper system.

6. COMPARISON WITH EXPERIMENTAL RESULTS

6.1. CABLE WITHOUT DAMPER

Figure 8 shows the comparison of the in-plane displacement frequency response
curves of the cable without an oil damper and subject to a harmonic excitation of



Figure 7. Frequency-response curves of cable}damper system with optimum damper size. }d}
Stable in-plane a1; ] unstable in-plane a1; === stable out-of-plane a2; # unstable out-of-plane a2.
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1)414 N amplitude around the "rst natural frequency of the corresponding linear
cable. The cable tension used here is 130 N and the dynamic force is located at 0)5%
of the cable length measured from the top anchor of the cable. Theoretical results
show a weak non-linearity in the cable vibration. For the sweep-up excitation
frequency, a bifurcation occurs at Point A, after which either the planar cable
vibration becomes unstable (Point A to Point B) or the stable non-planar vibration
occurs (Point A to Point C). Clearly, the theoretical stable non-planar solution
matches the sweep-up test results. Although the theoretical study predicts that after
Point C, the stable non-planar response of the cable may jump up to the stable
planar solution again (towards Point E), the test results do not provide this
evidence. The test results actually follow the theoretical in-plane displacement
responses predicted from the sweep-down excitation frequency until Point D,
where the theoretical response becomes unstable.

When the amplitude of the exciting force is increased to 5 N, non-linear cable
vibration behavior and 1 : 1 internal resonance between the "rst in-plane and
out-of-plane cable vibrations are observed from both experiment and theoretical
analysis. As shown in Figure 9, a bifurcation of cable response occurs at Point A
(1)003 Hz excitation frequency) in both experimental and theoretical frequency
response curves. If the excitation frequency is further increased from Point A, either
the stable non-planar cable vibration occurs or the unstable in-plane cable



Figure 8. Comparison of in-plane frequency-response curve of cable without damper
(F"1)414 N). * Theoretically stable; - - - theoretically unstable; d measured.
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vibration happens. The test cable actually follows the route of the stable non-planar
cable vibration until Point C where the cable vibration suddenly drops and then
follows the sweep-down frequency response curve. The measured sweep-down
frequency response curve is in good agreement with the theoretical stable sweep-
down frequency response curve. All unstable frequency responses predicted by the
theory are not observed in the tests. Clearly, the theoretical response curve can
capture basic non-linear behavior and internal resonance of a sag cable.

6.2. CABLE WITH DAMPER

With respect to the damper e!ect on mitigation on non-linear cable vibration,
the measured and computed displacement responses of the cable with an oil
damper are presented in Figure 10. The damper size is 22)12 kg/s and the excitation
frequency is around the "rst in-plane modal resonance. The cable tension and
excitation amplitude are kept as 130 and 5 N, respectively. The damper is located at
3% of the cable length near the bottom anchor. Compared with Figure 9, both
theoretical and experimental cable responses are signi"cantly reduced because of
the oil damper. The reduction in the resonance peak reaches more than 50%. The
non-linear cable vibration thus becomes very weak, particularly for the cable in



Figure 9. Comparison of in-plane frequency-response curve of cable without damper (F"5 N).
* Theoretically stable; - - - theoretically unstable; d measured.
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tests. Although the bifurcation and 1 : 1 internal resonance are still found in the
theoretical frequency response curve after Point A, it is hardly observed in the test
cable with the oil damper. This may be attributed to the additional constraint from
the connections between the exciter and cable and between the damper and cable in
the tests.

7. CONCLUSIONS

The formulation derived in Part I of this paper has been applied to investigate
non-linear vibration behavior of inclined sag cables with and without oil dampers
in cable-stayed bridges. The theoretical results were compared with the
experimental ones, and the agreement was found to be satisfactory. Both the
experimental and theoretical results demonstrated main features of non-linear
cable vibration, which include response hardening, response bifurcation, 1 : 1
internal resonance between the "rst in-plane and out-of-plane modes of vibration in
a relatively taut cable, and response jump. Cable sag and cable internal structural
damping ratio a!ected these types of non-linear cable vibration behavior.
Both experimental and theoretical studies demonstrated that an oil damper with
an appropriate damping coe$cient being selected could e!ectively suppress the



Figure 10. Comparison of in-plane frequency-response curve of cable with damper (F"5 N).
* Theoretical stable; f theoretical unstable; m measured.
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non-linear in-plane response amplitude in both the pure in-plane motion and non-
planar motion.
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